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SUMMARY 

An experimental and theoretical study was conducted on shallow 
spherical caps under concentrated load. Aluminum specimens were 
clamped on the outer edge and tested using load tips with differ- 
ent cross sectional areas. Results from a numerical solution of 
Reissner's equations gave good agreement with experimental meas- -. 
urements for axisymmetric deflections. The experimental data re- 
vealed nonaxisymmetric deflections, upper and lower critical buck- 
ling loads, prebuckled and postbuckled deflections, and the exist- 
ence of several sets of critical loads. A numerical solution to 
calculate bifurcation loads where asymmetric modes intersect the 
axisymmetric equilibrium positions failed to predict asymmetric 
buckling for this problem. 
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NOTATION - SYMMETRIC ANALYSIS 

a Radius of curvature of spherical shell (in.) 

b Horizontal radius of cap (in.) 

B Dependent variable 

C = Eh Extensional stiffness term (lb/in.) 

D = Eh3/12(1 - y2) Flexural rigidity (lb-in.) 

E Young's modulus (psi) 

H 

h 

L 

Mx’ Me 
Nx’ N@ 

P 

.L p" = Pa/Eh3 

q 

Q 

r 

r 
0 

rP 

u> w 

Radial stress resultant (lb/in.) 

Shell thickness (in.) 

Rise of spherical cap (in.) 

'Moment stress resultant (in.-lb/in.) 

Stress resultants parallel to the mid- 
surface (lb/in.) 

Applied axial load in addition to hydro- 
static compression (lb) 

Nondimensional load 

External pressure (psi) 

Transverse shear stress resultant (lb/in.) 

Horizontal radius of deformed shell mid- 
surface (in.) 

Horizontal radius of undeformed shell mid- 
surface (in.) 

Radius of load area (in.) 

Radial and axial components of midsurface 
displacements (in.) 

v Axial stress resultant (lb/in.) 
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W  
0 

X 

Z 
0 

aO 

B 

n 

Axial deflection, apex of cap (in.) 

Independent variable in Reissner's equations 

Axial distance to point on midsurface (in.) 

See Eq [5] 

Rotation of shell tangent due to deflection 

Determinant of linear algebraic equations 

A = 2[3(1 - y2)] "($ Geometrical parameter for spherical caps 

v Poisson's ratio 

0 
Y 

Yield stress (psi) 

cp, 0, Angles from shell centerline to normal of 
deflected and of undeflected shell, re- 
spectively 

X 



I. INTRODUCTION 

This study examined the effect of load area on the behavior of 
clamped shallow spherical caps under concentrated load. Both analyt- 
ical and experimental results are reported. 

The clamped cap under concentrated load has not received the 
attention in the literature that has been devoted to the cap under 

external pressure. Evan-Iwanowski' tested clamped caps made of 
plastic and reported that no snap-through buckling occurred for 
any of his specimens. He did note a transition from axisymmetric 
to asymmetric deflection shapes with increasing load. No precise 
numerical results appear in the literature for the finite deflec- 
tion equations for the clamped boundary condition. 

A slight discrepancy appears in the literature between theory 
and experiment for caps with no horizontal edge restraint. Ash- 

well 
2 observed that "A shell with an increasing point load acting 

toward its centre of curvature is found by experiment to form a 
circular dimple, or region of reversed curvature, which spreads 
concentrically from the load." Ashwell devised an approximate 
solution for the nonlinear problem by using two sets of linear 
equations, one in the dimple area and one for the outer‘region 
of the shell. Ashwell obtained some experimental results that 
gave fair agreement with his approximate solution. Evan-Iwanow- 
ski1,3, and 4 also reported experimental results for buckling 
loads and load-deflection curves similar to Ashwell's solution. 

Archer5 solved the finite deflection equations directly, using 
a numerical solution. His computed buckling loads fell below those 
calculated and measured by Ashwell and those obtained earlier from 

approximate solutions by Biezeno 
6 

and by Chien. 
7 

The present study was initiated to study the effect of load 
area on the deformation of the clamped cap and to study the tran- 
sition from axisymmetric to asymmetric deflection shapes. 

Aluminum specimens were used in the study. These were manu- 
factured by an explosive-forming process. By them-milling the 
specimens to the desired thickness, thinner shells were employed 
in this study than in previous investigations. 



II. THEORY 

The theoretical portion of the study is based on two different 

sets of equations. The first set is Reissner's 8 
finite deflection 

equations for shells of revolution under axisymmetric loads. These 
reduce to a fourth-order system of nonlinear ordinary differential 
equations that are solved numerically by use of a digital computer 
solution. 

The solution of Reissner's equations completely determines 
axisymmetric equilibrium states. Deflections, stress resultants, 
and stresses in the shell are printed out by the computer program. 

Critical loads in this theory are defined in the classical 
manner for static buckling. At buckling, at least two solutions 
of the differential equations exist for the same loading, and 
these solutions define equilibrium positions that are infinites- 
imally near each other. Since the nonlinear equations are solved 
directly, the distinct solutions near a buckling load can be ob- 
tained individually. This allows computing energy levels, post- 
buckled solutions, and solutions at loads above the first buck- 
ling load. Enough information is .available to establish whether 
a bifurcation or a snap-through type of instability exists at the 
buckling load and whether the postbuckled solutions are stable. 

The second set of equations used in the study is based on the 

nonlinear strain-displacement relations listed by Sanders. 9 These 
general expressions include asymmetric deformations as well as 
axisymmetric terms similarto those in Reissner's equations. The 
general strain expressions lead to an eighth-order set of nonlin- 
ear partial differential equations whose solution would be long 
and expensive. The approach adopted here is not to solve the 
general equations, but to seek loads where bifurcation occurs and 
asymmetric deflection modes exist infinitesimally near the axi- 
symmetric equilibrium state. The axisymmetric solutions are ob- 
tained from finite deflection theory, but the bifurcation points 
are determined from linearized equations. The mode shapes asso- 
ciated with the bifurcation loads can be computed, but the.ampli- 
tude is undetermined and there is no way to tell if the asymmetric . 
solutions are stable. 

The linearized theory has been used recently by several au- 
thorslO,ll, and 12 

for the special cases of spherical caps under 
pressure and cylinders under axial compression and hydrostatic 

2 



pressure. The numerical solution in the present study was derived 
for general shells of revolution. Since the solution has not ap- 
peared before in the open literature, the equations and method of 
solution are presented in detail-in the Appendix. 

The computer program for Reissner's equations has been de- 

scribed elsewhere 13,14, and 15 and will be outlined here. 

A. REISSNER'S EQUATIONS 

Although the experimental program was confined to shallow 
shells, the theoretical solution is applicable to general shells 
of revolution. The only restrictive assumption in the theory, 
in addition to the usual Love-Kirchhoff assumptions, is that the 
strains are elastic and small compared to unity. 

The theory reduces to two nonlinear simultaneous differential 
equations that must be solved for the two unknowns cp and H. They 
are written as 

- a0 D cos Cp 

+ r. a0 H sin cp = r. a0 V cos cp; 

aO 
cos cp r 

C 
H cos cp + V sin cp - v - r. q sin cp 1 

-roqsincp- v(H cos cp + V sin (p> 

11 

, 

- 

=Ci o( cos cp - cos cp 0). 

where primes denote differentiation with respect to the independent 
variable x. Figure 1 illustrates the notation. 



I,,, - .,,, ,,, , , , .,,,. . . . . . . .-. 
_.._ -_.. __.-.-. ..- 

Stress resultants and deflections in terms of cp and H are: 

rOq P 
v=-2--’ 2rrr ' 

0 

NX 
= H cos cp + V s in cp; Dbl 

Q  = -H s in cp + V cos cp; 

roH' 
Ne = 7 + H cos CJJ  - roq s in cp; 

0 

+v (  0 s in cp - s in cp ); 
r  

0 I 

Dal 

Del 

Me 

(0: -  'P') + (s in (PO - s in 'p) 1 . r  [3fl 
0 0 

r  
u=o 

C Ne 

)  1 s incp dx. 

The middle surface of the undeformed shell is  defined by the 
parametric equations r = ro(x), z  = z,(x). The following rela- 

0 0 

tions hold for the undeformed shell: 

cx:  = (ro)' + (z:)~, ro = a0 cos (p,, zo = a0 s in (p,. 

A s imilar set of equations without the zero subscr ipt applies for 
the deformed shell. 

B. NEWTON'S METHOD 

The nonlinear differential equations are solved by approxi- 
mating them by a sequence of linear "var iational" equations. 
The linear equations are solved numerically. 

[4al 

[51 

The linearization is  performed by expanding nonlinear terms in 
the differential equations in a Taylor's ser ies and retaining only 
linear terms. Any function F(y, y', x )  appearing in the equations 
where y  is  a dependent var iable is  approximated by 
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yrn + ~Y,S Y; + EY', x m mu Y,.$ x Y;, +ym + 

[61 

The subscripts of F denote partial derivatives and y, is the mth 

approximation for the solution y. The variable 6y becomes the de- 
pendent variable in the linearized differential equation and the 
next approximation for y is 

Y m+l = 'rn +syrn 

This linearization procedure is an extension of Newton's method 

for finding roots of polynomials. Bellman, Juncosa, and Kalaba 16 
..- 

credit Chaplygin I/ with first applying Newton's method to the inte- 
gration of nonlinear differential equations in 1905. This method 
has largely been ignored in the United States, in spite of its gen- 
erality. The lack of interest in applying Newton's method to non- 
linear differential equations may be due to the fact that the se- 
quence of linear differential equations to be solved contains 
variable coefficients. The difficulty in using Newton's method 
has been partially removed since digital computers have become 
available for calculating numerical solutions. 

Reissner's equations have a singular point at the apex r. = 0. 

A new variable B is introduced in the computer solution to avoid 
division by zero and to improve numerical accuracy. 

cp, - cp 

B=F= r . 
0 0 

In applying Newton's method to Reissner's equations, nonlinear 
terms appearing in the equations are expanded in terms of B and H. 
For example, where cos cp appears in the nonlinear equations, it is 
replaced by 

cos cp = cos (pm i- (sin 'pm) r. 6 Bm 

where cp m = (PO - Pm = (P, - roBm. Terms such as H cos cp are expanded 
as 

H cos cp = H m cos cpm + 6 Hm cos (pm + r. Hm 

[73 

[81 

[lOI 

5 



After solving the resuiting linear differential equations for 
the corrections 6Hm and 6Bm, the next approximation for the solu- 

tion is calculated from: 

H&l = Hm + 6H m ; 

B m+l = Bm + 6B m ; 

B m+l =r 
OB m+l' 

and the process is repeated until the corrections become small. 

The linear variational differential equations for &Hm and 6B 
m 

are not derived explicitly here, because the nonlinear differen- 
tial Eq [l] and [2] were integrate'd by parts twice to obtain equiv- 
alent nonlinear integral equations. The linearization was actually 
performed on the integral equations. 

The solution of the linear integral equations is obtained nu- 
merically by a subroutine written to solve linear systems of inte- 
gral equations by replacing the integrals by mechanical quadrature 
formulas. This reduces the integral equations to a set of alge- 
braic equations. The subroutine is described in the Appendix in 
connection with the computer program for bifurcation buckling. 

C. BUCUING CRITERION 

If the error in the current solution (B,, Hm) is small, the 

correction (6Bm, m 6H ) is normally small and the solution con- 

verges. However, the error can be small while the computed cor- 
rection is‘ large. This occurs when the determinant a of the al- 
gebraic equations is near zero. The instability in the numeri- 
cal solution at n = E 1 = E2 = 0 serves to define a point of neu- 

tral equilibrium since a non-zero solution for 6B and 6H in this 
case implies the existence of another equilibrium position ina the 
neighborhood of the position defined by the given solution (B, H). 

LIlaI 

[llbl 

[llcl 
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D. BOUNDARY CONDITIONS 

Only one difficulty appeared in trying to apply Reissner's 
equations to the experimental shells. The proper boundary con- 
ditions at the edge of the finite load area are not known. The 
axial shear resultant V is statically determinant, but the two 
boundary conditions for Reissner's equations are continuity 
equations that require matching the rotational and radial dis- 
placements of the unloaded portion of the shell at the juncture 
with the small loaded area of the cap near the apex. The total 
load applied through the load tip can be measured but the dis- 
tribution of pressure over the load area is not known and also 
varies in a nonlinear fashion with the deflection of the shell. 

The boundary conditions at the apex of the shell can be de- 
termined from symmetry. The device employed in the computations 
was to use the boundary conditions at the apex of the shell and 
apply them at the edge of the load area a short distance away. 
For the small loading tips, the error in this is negligible. For 
the larger tips, this boundary condition introduces some discrep- 
ancy between the experimental deflections measured at the apex of 
the shell and the computed deflections that actually are calcu- 
lated at the edge of the load area. 

From the axial symmetry of the shell and the loading, it can 
be seen that the rotation B is 'an odd function of the radius r 

0 

and the horizontal stress resultant H is even. Therefore, at the 
apex, 

H' = 0 atr =0, 
0 

atr =O. 
0 

The above boundary conditions were used in the computations at 
r =r. 

0 P 

At the clamped edge 

p = 0, r. = b, 

u= 0, r = b. 
0 

7 



III. EXPERIMENT 

Shallow spherical shells with clamped boundaries and made of 
aluminum were loaded at the apex. Half of the shells were made 
with a 20-in. spherical radius and the other half with a 31-in. 
spherical radius. Shell thicknesses were controlled to provide 
nearly the same five values of A for each of the spherical radii. 
For the five values of A and for both of the spherical radii, 
concentrated loads were applied through four different size load- 
ing tips. A summary of the several parameters follows: 

Material 6061 - T6 Aluminum 

Spherical Radius 20 and 31 in. 

Thickness Range 0.0066 to 0.1090 in. for 20-in. 
spherical radius 
0.0037 to 0.0690 in. for 31-in. 
spherical radius 

Base Diameter 8-in. 

Load Tip Diameter 

Nominal Geometry, A r 

l/8, l/4, l/2, and l-in. 

5, 8, 12, 16, and 20 

Radius to Thickness Ratio 180 minimum, 8400 maximum 

Total Number of Tests 40 

The experimental part of the program required three separate 
and distinct areas of effort. These were making the shells, de- 
termining the finished shell geometry and thickness, and observing 
and measuring shell response during testing. Shells were formed 
explosively from aluminum sheet stock and reduced in thickness by 
them-milling. Geometry plots along radial lines were made by 
using linear displacement transducers and were recorded on an X-Y 
plotter. Thickness was measured with a micrometer. Data taken 
during the tests provided a record of force-displacement for the 
several critical buckling loads and for plastic behavior. For 
the higher values of A where shells remained elastic, the same 
shell was tested with more than one load tip. Where shells de- 
formed plastically, a different shell was used for each load area. 

8 



A. SHELL FABRICATION 

Aluminum shells were fabricated by explosive-forming 6061 
aluminum into a female fiberglas epoxy laminated die. The mate- 
rial was received in sheet form, cut into squares, and into cir- 
cular blanks of lO%-in. diameter. While in the O-temper, explo- 
sive-forming set the soft material into the die cavity (Fig. 2). 
The formed shell was brought to solution heat treat temperature 
for 15 minutes and water quenched. Immediately after quenching 
the shells were kept cold to retain the T4 condition, until th,ey 
were resized explosively into the same die cavity. 

After resizing, the shells were artifically aged to the T6 
temper by precipitation heat treating for several hours and then 
them-milled to the required thickness. Chem-milling rate was 
about 0.00075 in. of surface removal per minute (with both sides 
of the shell exposed to the them-mill bath, total removal was 
about 0.0015 in. per minute). Reasonably close control in thick- 
ness was accomplished by establishing the them-milling rate and 
determining the immersion time. It was necessary to rotate the 
shells while in the bath to produce uniform removal over the en- 
tire surface. 

B. GEOMETRY DETERMINATION 

Shell cross sections were measured along radial lines start- 
ing at the apex and at 60-deg intervals. Two linear displacement 
transducers were mounted to measure z 

0 
at r. (Fig. 1). Trans- 

ducers were kept fixed in space and the shell was translated while 
being held in contoured steel clamping rings. The schematic 
shown in Fig. 3 identifies all the instrumentation used in measur- 
ing and recording shell geometry. 

The system was checked before each survey by measuring an 
accurately machined wedge and observing the resulting line for 
linearity, slope, and length. Calibrations in the radial direc- 
tion were accurate to +0.002 in. over a lo-in. pen travel and - 
corresponded to a half chord length of 4 in. Calibrations in the 
z-direction were accurate to +0.0005 in. over a 15-in. carriage 
travel, corresponding to $ in. of mid-chord offset distance. 
These scales resulted in magnifying the actual radial distance by 
2% times and the z-distance by 30 times. 
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Surveys were spaced k-in. apart, thus providing a quick visual 
check for symmetry between the lines. Deviations from the nominal 
geometry were found by-direct comparison with a master curve drawn 
for the appropriate spherical radius. 

Thicknesses were.measured, using a deep-throat micrometer with 
ball ends, and recorded to the nearest 0.0001 in. The same' six 
radial lines used for geometry cross sections.were measured at l- 
in. intervals for a radial distance of 4 in. 
of 25 measured points on each shell. 

C. BUCKLING TESTS 

Loading and measuring shell response was 

This gave a total 

accomplished by inte- 
grating a loading device and a deflection measuring device into the 
basic tester. Clamped boundaries of appropriate spherical radius 
were provided by contoured steel rings having an 8-in. inside dia- 
meter and 9%-in. outside diameter giving a 3/4-in. clamping annu- 
lus. A schematic of the assembly is shown in Fig. 4. 

All shells were loaded by dead weights acting through a lever 
system supported on knife edges. The loading beam inside the 
tester supported one of the four load tips. A load tip (l/4-in. 
dia), the loading beam, and a lower clamping ring are shown in 
Fig. 5. 

Hollow steel cylinders with 0.05-in. walls were used as the 
loading tips, except for the l/8-in. diameter tip that was solid 
steel. This type of load tip was selected because of the large 
departure the shells made from a flat area in the vicinity of the 
load tip and because of the great range in maximum load, several 
hundred pounds to several tenths of a pound. The only consistent 
contact area under these conditions was felt to be the hollowed 
steel tips. Ordinarily the loading system was damped with the 
dash pot shown in Fig. 4, however, for the larger loads, using 
a 10 to 1 load magnification, it was necessary to modify*the sys- 
tem by using a load pan without damping. Overall accuracy of the 
loading system, using weights accurate to -&I.00001 lb, was within 
0.001 lb up to 10 lb total load and within 0.5% for all higher 
ranges. As the loading beam followed the deforming shell, the 
load arm was kept horizontal by raising the knife edge with the 
vertical adjustment shown in Fig. 4. 

10 



Measuring shell response was done with the deflection measur- 
ing device that measured in a cylindrical coordinate system. 
Figure 6 is a detail picture of the device, showing the dial 
gages mounted on a holder that is free to move on a radial line 
and able to rotate to any position. Angular position was measured 
by the indexed top of the tester, divided every 10 deg. The sig- 
nal light on this device was used to determine when the shell had 
been contacted. Initially, the scheme for measuring to the shell 
surface was accomplished by completing an electrical circuit with a 
a needle coming in contact with the shell. It was found that the 
force required to overcome electrical contact resistance was suf- 
ficiently great that the very thin shells were noticeably deformed 
before the light would signal. An improvement over this system 
was a break-circuit device whereby a switch was opened when the 
shell was contacted and always with the same force, which measured 
less than 0.05 grams. A detail of the working mechanism of this 
switch is shown in Fig. 4. Repeatability of measurements in the 
vertical z-direction was observed to be +0.0002 in. 

The shell was placed in the tester, observing the same angular 
orientation established during the explosive forming process and 
maintained during all operations. Preselected radial distances 
were chosen as those points at which all deflection measurements 
were made. With no load on the shell, a vertical reference di- 
mension was established at the shell apex and vertical distances 
from a horizontal plane were measured along the zero-degree line 
at the preselected radial points. During load, vertical distance 
measurements taken at these points measured the vertical deflection. 
In addition, deflection measurements were made along a circle at 
a fixed radial distance from the apex. Generally, these measure- 
ments were taken at 30-deg intervals and provided sufficient in- 
formation to identify the number of waves in nonaxisyrmnetric de- 
flections and to determine the uniformity of the wave lengths. 
Where shells deformed plastically, the amount of permanent deform- 
ation at the apex was noted after the load had been removed. 

This loading scheme made buckling of the shells very apparent. 
The two stable configurations for the shell were made obvious by 
the action of the loading arm shown in Fig. 4. As the upper cri- 
tical buckling load was reached by increasing loads, the loading 
arm dropped noticeably. When decreasing the load, the lower criti- 
cal buckling load.was apparent when the loading arm moved upward 
an appreciable amount. By maintaining a constant load on the 
shell between the upper and lower critical loads, the two branches 
one prebuckled, the other postbuckled, could be determined merely 
by snapping the shell off of one branch onto the other. It was 
necessary, before making deflection measurements, to maintain a 
level loading arm for accurate application of load. Most of 
the buckles occurred with audible snaps. 
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Shells that deformed plastically were resurveyed at the end 
of testing to note the amount and kind of permanent deformation 
left in the shell without load but still in the clamping rings. 
In the cases where shells retained a permanent dimple each new 
test required a new shell. Shells that remained elastic were re- 
tested by using the same shell with another load tip. 

Comprehensive definition of shell behavior is virtually im- 
possible when using point by point determination of behavior and 
when using discrete values of load. As much information as pos- 
sible, consistent with conducting forty separate tests was ob- 
tained from the specimens. 
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IV. RESULTS 

Theoretical calculations did not reveal buckling loads for 
the clamped spherical cap under concentrated load. The experi- 
mental investigation, however, defined upper and lower critical 
buckling loads, prebuckled and postbuckled deflections, measured 
nonaxisymmetric deflections, and showed the effect of load area 
on buckling behavior. For small values of A shells did not buckle 
but exhibited plastic deformation. 

A. THEORETICAL RESULTS 

The solution of Reissner's equations for the clamped cap did 
not determine any buckling loads, but did show a marked transition 
in the behavior of the shells at loads near P* = 2.2. The load 

deflection curve changed slope rapidly. Archer's5 predictions 
for theoretical buckling loads for caps without horizontal edge 
restraint were within 5% of P* = 2.2 for A greater than 8. At 
P9' near 2 2 * , the midsurface stresses under the load change from 
compression to tension. The bending moment under the load reaches 
a maximum value as a function of load. The determinant D in the 
numerical solution has a minimum at these transition loads but 
does not reach zero, which would serve to define snap-through 
buckling. 

The load-deflection curvest are shown in Fig. 7 to 10. The 
curves are linear at low loads, change slope rapidly around P* = 
2, and are nearly linear again. As might be expected, a given 
load produces more deflection when applied over a small load 
area. There is relatively good agreement between theory and ex- 
periment for deflection. Some of the experimental curves have 
horizontal tangents (axisymmetric buckling) near the transition 
loads where the theoretical curves merely show flattening. 

The transition loads are better defined by the midsurface 
stresses. As the dimple under the load gets larger, it reaches 
a point where the region around the load actually goes into ten- 
sion. This is illustrated for a concentrated load with zero load 
area in Fig. 11. 

tproperties and dimensions of all test specimens are listed 
in Table 1. 
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Once the load has formed a dimple of completely reversed curva- 
ture under the load area, the bending moment under the load does 
not increase with increasing load because the dimple tends to 
spread over a larger area rather than remaining confined to a 
small area. A typical plot of bending moment as a function of 
load is shown in Fig. 12 for shells with a nominal value of A = 
8. As the load area decreases, the maximum moment increases and 
is infinite at zero load area. 

The growth of the dimple area under load is shown in plots of 
the deflection as a function of radius for given loads. Figures 
13 and 14 show that most of the deflection is in the area of the 
load and the boundary of this dimpled shape moves outward with 
increasing load. These plots also show the slight difference 
between the deflection at the edge of the load area and the de- 
flection at the center. The load-deflection curves in Fig. 7 
thru 10 are plotted using the measured deflection at the apex of 
the shell while the theoretical curves use the deflection at the 
edge of the load area. If the measured deflections were started 
at the edge of the load area, instead of the apex the curves would 
show even better agreement than they do now. Figure 15 shows 
that the determinant of the algebraic equations in the computer 
solution dips toward zero at the transition load for a typical 
shell. As long as it does not change sign, the load-deflection 
curve is monotonic. 

Some of the specimens yielded under the load. The theoretical 
point load produces infinite bending stresses. As the finite 
load area increases, these bending stresses tend to decrease. 
Figure 16 gives the load for which the shell first starts to 
yield at a shell surface. The load to produce yielding is plotted 
against load area for a shell with A = 8.25 for different values 
of the yield stress. In Fig. 17, the radius of the load area is 
held constant at r 

/ 
b = l/64 to give the yield load as a function 

of A. P 

All the preceding theoretical resuLts have been obtained from 
the computer program to solve Reissner's equations. The test speci- 
mens exhibited asymmetric deflection modes at higher loads. An 
attempt was made to predict the bifurcation loads where the asym- 
metric solutions of the finite deflection equations intersect the 
axisymmetric solutions. The calculations used in the computer 
program are described in the appendix. 
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The axisymmetric stress resultants in a typical shell (B-43) 
are shown in Fig. 18. As a dimple forms under the load, the shell 
goes into tension near the apex. Near the edge of the dimple, a 
portion of the shell is pushed outward radially to produce a band 
of hoop compression around the shell. These circumferential 
stresses appear to be strong enough to produce the asymmetric mode 
shapes observed experimentally. 

A further check on the computed axisymmetric stress state was 
attempted by putting strain gage rosettes on shell (B-43). The 
theoretical surface strains are compared with strain gage read- 
ings in Fig. 19 and 20. The two sets of data give fair agreement 
considering the rapid variation of the bending strain with radius. 
The large bending strains make it difficult to determine from 
strain gage data what the average strains are at the shell mid- 
surface. 

The computer program to check the axisymmetric stress state 
for bifurcation into asymmetric modes did not converge. It uses 
an iterative technique based on successive approximations to 
calculate eigenvalue h 1' The eigenvalue Al is defined as the 

multiplier that must multiply the axisymmetric stress state, such 
as the stress resultants in Fig. 18, in order to produce bifurca- 
tion into an asymmetric stress state. 

As many as 15 iterations were run on a given shell. The value 
of Al tended to oscillate slowly between positive and negative 

values without showing signs of converging. A convergent nega- 
tive value of A, would imply that a change in sign of the tensile 

stresses would produce buckling. The tensile and compressive 
stresses seemed to balance out so that the program gave no con- 
clusive answer about the stability of the stress state. 

The program prints out as the iteration proceeds, the current 
guess at the mode shape and additional stress resultants produced 
by buckling. A check of the terms in the differential equations 
multiplied by hl revealed that terms in the axisymmetric rotation, 

B;, were dominant. For example, where terms such as Nxpx appear 

in the finite deflection equilibrium equation, they are replaced 
by the expansion, 

Nxpx = $3; + N;Bnx+ NnxP;- 
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The first term drops out of the "variational" equations and the last 

term is often dropped under the assumption that pz is small. The 

terms in /3: are retained in the present analysis and these terms 

appear to be large in the iteration. It should be pointed out that 
the asymmetric buckles observed experimentally only occur at loads 
higher than those predicted by Archer for symmetrical buckling of 
caps free of horizontal restraint. At the time the experimental 

buckles form, p" 
X 

can be on the order of 0.1 so that the axisym- 

metric rotations are large. The effect this has on the iterative 
solution is not clear. 

It is possible that the effect of asymmetric imperfections in 
shape must be included in the analysis before it will predict the 
transition to asymmetric modes observed experimentally. 

B. EXPERIMENTAL RESULTS 

By providing an extended range of shell geometry (5 < A < 22), 
the data recorded from forty tests showed several types of shell 
behavior; such as, some of the shells suffered permanent set and 
did not buckle; some shells underwent progressively more complex 
nonaxisymmetric deflection with increasing load; some shells 
buckled with a single set of upper and lower critical buckling 
loads and other shells exhibited more than one set of such criti- 
cal loads. These behaviors were identified from load-deflection 
curves at the apex, on a radial line, and along a circular line. 
In trying to determine consistency of shell response for the same 
value of A from two different spherical radii, the data (in non- 
dimensional form) do not fully support the use of A as a common 
geometry parameter. 

Inelastic behavior is shown on Fig. 21 and 22 for A approxi- 
mately five. Permanent deflection left at the apex is measured 
by the broken line, the length of which corresponds to the amount 
of set after that particular value of load was reduced to zero. 
Data of this kind were obtainable only with a program of increas- 
ing load because of the significant permanent change in shell 
geometry. The knee of the curve varied between P"-= 1 to 1% for 
a = 20 in. and between P;k = 1 l/2 to 2 for a = 30 in. Permanent 
set for the same load decreased with increasing load tip diameter 
and deflections were correspondingly less for larger load tip 
diameter. 
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Shells with nominal value of A = 8 exhibited the same general 
behavior as shown for A = 5. Permanent set occurred in all four 
shells in Fig. 23 for a = 20 in. Sections through the shells 
along a radial line are shown in Fig. 24 for all four loading 
tips and at several values of load. The knee varied from PJC = 1% 
to 2.c4. Figure 25, for a = 31 in., shows the same orderly pro- 
gression of load-deflection curves for varying load area, however 
only the two smallest loading tips left permanent deflections in 
the shells. Deflections along a radial line are shown in Fig. 26. 
From Fig. 24 and 26, which show deflections on a radial line, the 
large departure between the shell and the loading tip illustrates 
the problem of attempting to provide a uniform pressure-like load- 
ing over a finite area. With this type of behavior, occurring over 
three orders of magnitude of maximum load, the only repeatable 
load application device was the hollow steel cylinder, as described 
earlier. 

Buckling, as found from load-center deflection curves, is 
shown in Fig. 27 for A nominally equal to 12, 16, and 20. The 
parallel dotted lines connecting two values of deflection for 
the same value of load are the upper and lower critical buckling 
loads. When the shell is on the left branch of the curve it is 
called prebuckled, and when it is on the right branch of the curve 
it is called postbuckled. This terminology is repeated at each of 
the separate sets of critical buckling loads and in addition each 
set identifies a mode of buckling with first mode occurring at 
the lowest pair of PEr and so on. For shells with A around 12, 

buckling occurred in one mode whereas higher values of A produced 
two and three modes of buckling. A steady progression of three- 
lobed, four-lobed, and five-lobed deflection patterns originated 
in orderly fashion as shown in Fig. 27. No two-lobed deflection 
pattern was measured. The values of P" at which nonaxisymmetric 
patterns were observed were as follows: three-lobed, P;k = 6.2 
to 9.3; four-lobed, P" = 7.3 to 11.0; five-lobed, PJ' = 8.5 to 
11.0. These values are not to be construed as limits or typical, 
merely as those at which such measurements were taken. In general, 
the four load-deflection curves in Fig. 27 have a similar appear- 
ance. Transitions from axisymmetric to three-lobed deflections, 
three-lobed to four-lobed and so on, appear to be related to 
changes in slope of these curves. Also, buckling into any of the 
modes is generally preceded by a flattening of the curve with 
increasing load as the upper critical buckling load is approached. 
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For h = 12, buckling for a 20-in. spherical radius shell 
occurred only with the l-in. diameter tip (Fig. 28). Nonaxisym- 
metric deflections, however, were apparent without buckling 
(Fig. 29). All loading tips caused buckling for the 31-in. 
spherical radius shell shown in Fig. 30, and three, four, and 
five-lobed deflections are shown by Fig. 31. 

With A = 16, nonaxisymmetric deflections were measured for 
20-in. spherical radius and the four different load tips showed 
one, two, or three buckling modes per shell. These are shown in 
Fig. 32. A series of deflection measurements made on circles 
near the apex and near the boundary revealed the behavior shown 
in Fig. 33 and 34. The nonaxisymmetric deflections changed phase 
across the point of zero deflections (Fig. 24 and 26). Shells 
with 31-in. spherical radius showed behavior similar to those 
with 20-in. spherical radius, however they went on to higher 
values of both P" and w 

0 / 
h, which are shown in Fig. 35. Figure 

36 revealed a change in the deflection pattern where the number 
of lobes, having reached five, changed to four with increasing 
load. .L Both spherical radii exhibited first mode of buckling at 
2 < P" < 3 for the l-in. diameter load tip (the largest), whereas, 
the smallest load tips turned the corner of the knee without 
buckling. 

Load-deflection curves for the highest value of A tested are 
shown in Fig. 37 and 38. Again, the largest diameter load tip 
showed the occurrence of buckling at small values of P* while the 
smaller load tips moved across the knee and did not buckle. For 
the 31-in. radius a single value of load produced a large number 
of stable postbuckled positions over many thicknesses of deflec- 
tion. 

A tabulation of upper and lower critical buckling loads and 
prebuckled and postbuckled deflections are given in Table 2. 
Photographs of three-lobed and five-lobed deflections, with the 
shell in the tester, are shown in Fig. 39 and 40. 

Except for A around 5 and 8 a predominantly nonaxisymmetric 
behavior pattern was observed to progress through multi-lobed 
deflections and through several modes of buckling with increasing 
load as A became larger. 
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V. CONCLUDING REMARKS 

From a practical standpoint, the most important result was 
that a clamped spherical cap carried a concentrated load at de- 
flections many times the shell thickness and appeared to become 
stronger with larger deformations. The postbuckled equilibrium 
configurations did not lead to high stress levels. The largest 
deflections and stresses were confined to an area around the 
load, the size of which increased with increasing load. Until 
the dimple approached the clamped boundary, the portion of the 
shell near the boundary had low bending and low transverse shear 
stresses. It appeared that a complete sphere or hemisphere would 
provide the same type of support as the clamped boundary. Most 
of the results of the present investigation should be usable in 
the design of deeper spherical shells. 

The agreement between the solutions of Reissner's equations 
and experiment was good, The calculated deflections and measured 
deflections agreed over a range of deflections many times the 
shell thickness. Some of the thicker shells yielded under the 
load so that Reissner's equations that are based on elastic theory 
did not apply for these shells. The shells yielded due to large 
bending moments. It seems feasible that practical results could 
be computed for these shells by replacing the boundary condition 
on rotation at the edge of the load area by a condition of the 
bending stress resultant, M 

X’ 
set equal to the plastic moment 

that the material can support. With the aid of this "plastic 
hinge", it is possible that useful results could be computed for 
the remainder of the shell until yielding starts at some other 
location. 

Reissner's equations are based on axisymmetric theory so that 
they do not predict the asymmetric behavior observed experimen- 
tally. It was noted that the deflections calculated from Reissner's 
equations gave fair agreement with the average deflection around 
the circumference for the shells with asymmetric buckles. 

The agreement between theory and experiment for the concen- 
trated load is in marked contrast to the behavior of the same 
type of shell under external pressure. The authors recently 

completed a study 15 of pressure buckling of caps formed by the 
same method as those tested here. Good agreement between theory 
and experiment was obtained for shells under pressure by account- 
ing for, in the analysis, deliberately formed initial imperfec- 
tions of shape. The current results were calculated assuming a 
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spherical shape, using shells that were formed as perfectly as 
possible. The clamped cap under air pressure buckled suddenly 
and assumed an inverted shape that may have yielded the material 
near the clamped boundary. 

An explanation for the difference in behavior under the two 

kinds of load has been advanced by Evan-Iwanowski'. The concen- 
trated load produces bending under the load from the beginning 
of loading, The deflections in this area rapidly build up to 
more than the shell thickness. The dimple spreads with increasing 
load, but much of the shell is not highly stressed. Buckling pres- 
sures, on the other hand, are associated with deflections from one- 
half to one shell thickness. Initial imperfections of this same 
magnitude can be present in shells and, therefore, be a factor in 
determining buckling behavior. 

The computer programs to calculate bifurcation loads associ- 
ated with asymmetric deformation modes do no produce any convergent 
solutions. The tentative conclusion is that the theory does not 
reveal any asymmetric buckling modes for a perfect shell. The 
conclusion is tentative, because it is dangerous to base conclu- 
sions on lack of convergence of numerical solutions. 

The analytical results predict high circumferential stresses 
in a narrow band at the edge of the dimple produced by the load. 
These stresses seem to cause the buckles observed in the experi- 
ments. It is not apparent whether the effect of initial imper- 
fections must be included in the theory to account for the asym- 
metric buckles or not. 

The computations using Reissner's equations do not define 
symmetric buckling. The load-deflection curves remain monotonic, 
but they have a flat slope at certain loads. The determinant a 
of the algebraic equations in the numerical solution must vanish 
in order to define buckling. At the loads where the load-deflection 
curves change slope, the determinant shows a minimum and convergence 
of the solution is slow, but the determinant does not reach zero 
(Fig. 15). 

The stresses near the.clamped boundary are not large, which 

raises the possibility that Archer5 could have continued his sol- 
ution for the cap free of horizontal edge restraint to higher 
values of load by taking smaller load increments in the calcula- 
tions. The possibility seems worth investigating, 
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APPENDIX 

ASYMMETRIC BUCKLING THEORY 

The theory is based on the strain expressions for small finite 

deflections that are listed by Sanders'. Bifurcation points in 
the load-deflection curves occur when two solutions of the dif- 
ferential equations intersect at the same point. The loads at 
these bifucation points can be determined from linearized theory 
once one of the two solutions is known. 

For the solution considered here, the shells are shells of 
revolution under axisymmetric loads. The known solution is the 
nonlinear axisymmetric solution, and the bifucation points define 
loads where the shell has asymmetric equilibrium positions. The 
question of the stability of these asymmetric solutions is not 
answered by the linearized theory. 

The nomenclature used in this appendix is defined as follows: 

Notation - Asymmetric Analysis 

C 

D 

E 

f 

h 

1 
Kl =q 

Mx'"e,Mxe 

n 

N 
XEJ 

Stretching stiffness of shell (lb/in.) 

Bending stiffness of shell (lb-in.) 

Young's modulus (psi) 

Natural frequency (cps) 

Shell thickness (in.) 

Curvature of meridian curve in. c -9 

Moment stress resultants (in--lb/in.) 

Number of complete waves in circumferential direction 
of the buckled shell. Also used as superscript and 
subscript to denote buckling deflections and stress 
resultants that are superposed on axisymmetric stress 
state or the variation with x of these quantities 

Shear stress resultant in plane for shell surface 
(lb/in.) 
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4 

Qx’Qe 

rl 

r 
0 

T 

u>v,w 

X 

z 
0 

pX@, 

P 

8 

Normal stress resultants in meridional and circumfer- 
ential directions (lb/in.) 

Zero superscript denotes axisymmetric stress and de- 
flections before buckling 

External pressure lb In. ( I' 2, 

Shear stress resultants normal to deflected shell 
surface, (lb/in.) 

Radius of curvature of shell meridian curve (in.) 

Radius of shell perpendicular to the centerline (in.) 

Buckling torque (in.-lb) 

Deflections of shell middle surface in meridional, 
circumferential, and normal directions, respectively 
(in.) 

Independent variable; r. and z. are functions of x 

Axial dimension of any cross section of shell (in.) 

Rotation of tangents to shell middle surface in merid- 
ional and circumferential directions (radians) 

Eigenvalues 

Poisson's ratio 

Angle from centerline to normal of meridian curve 
of the undeformed shell 

Mass density ( lb-sec2/in.4) 

Circumferential coordinate of point on shell middle 
surface (radians) 

Primes denote differentiation with respect to x. 
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The strain/displacement relations for the middle-surface 
strains in the finite deflection theory are: 

1 au 
E 

X =Fpi-rl w +$pf; CAlal 

Ee 
_ 1 av I u cos cpo _ 

w sin Cp 

r. at3 
o+l 2. 

7 b [Alb 1 r r 
0 0 

1 av cos cp 
0 

EX0 =<X- r. [Ale I 

The changes in curvature are taken in the same form as in linear 
theory: 

1 a!3 X 

KX 
[A2a 1 

[A2b I 

Se 
1 +e + l& a@x cos To 

=<&- roK- r. '0. 

Neglecting transverse shear strain, the rotations of 
normal are equal to the rotations of the tangents to the 
surface. 

1 aw p,= ^ --+t;; ( ) ao ax 

( 

1 aw 
v sin (II 

pe = - 
-- 
r. &3 

+ r O. 
0 > 

C-QCI 

the shell 
middle 

[AhI 
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The constitutive relations are: 

. Nx = C (Ex+va,) ; 

Ne = C (E~+vE~); 

N 

Me = D (“efVKx) ; 

M xe 

where 

[Ahal 

Mb I 

i34c I 

[ASal 

Mb I 

iIA5c 1 

C=Eh 
l-v2 

and D = &. 

The equations of motion, which can be derived from Hamilton's 
principle using the strain energy expression associated with the 
above strains, are 

cos cp N 
0 c 

> 
8 

2 
au = a,roPh -* 
at2' 

6rN 
( ' xe)+ a 

ax 3 + a cos cp 
0 ae 

N 0 0 xe 

2 av = airoph -* 
at2' 

aoro - rl Qx ‘NB x x - Nxepe > 

[A6a I 

- a0 sin cp 
0 CQe - NxeBx - NeBe) 

[A6b 1 
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a(r~Q~). aQe 
N 

ax +cx - o a0 + aor x + 
Ne sin 'p, 

'1 
r 

0 > 
- & ( 'oNxPx + rONxepe > 

2 
-a 0 %  CNxePx 

&W + N$,) -t CXoroq = aorooh -a 
at2' 

[ARC 

aPoMx) aMx, 
ax 

+a - 
0 ae - aoMe cos cp, = aoroQx; [A6d 

a k”xe) + c\I 
ax 

aMe F a M  cos cp 
0 ae 0 xe 0 = aoroQe. Me 1 

These nonlinear equations for the finite deflection theory do 
not reduce exactly to Reissner's equations for the axisymmetric 
static case, but the two solutions are equivalent as long as the 
rotation B, of the shell normal is small enough that tan p, can 

be approximately by p . X 

Having the axisymmetric solution, the procedure is to assume a 
solution to the nonlinear finite deflection equations in the form 

u=u O  + un; [MaI 

v = v” + vn; [A7b 1 

n w=wO+w; [A7c1 

where Lo, v", w") represent displacements in the known axisym- 
metric solution. This solution also has known axisymmetric stress 

resultants, No 
0 

X' NeJ 
and No 0 xe along with the rotation pz. Be = 0 

from axial symmetry. 
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The solution (u, v, w) is assumed near the axisymmetric one. 

This implies that the solution (Un, vn, w") is small and that non- 
linear terms in these variables can be neglected. (The superscript 
n will later be associated with the number of circumferential waves 
in the buckled shape.) Neglecting these nonlinear terms obtains 
the equations of motion, Equations [A6], in the following forms: 

a(roNnx> + a "CNnxe> 

ax a0 -CXN 
0 0 ne 

eos cp 
0 

2n 
-- - NcBnx - NnxBE - 

au 
= aoroph --- 

at2 ’ 
[A8a 1 

a(rONnxe) + a: N aNne 
ax 0 nxe cos 9, + a0 7 

-a o sin cp 
0 ( Qne - NEePnx - NnxBBZ - 

a(r Q N N 0 nx > aO(aOQn@) 
sin cp 

+ -!-Qr 
( 

nx 
ax ae 

-+ nG 0 

00 r 1 r 
0 

NOB x nx + NnxBZ + NZeBne )I 
&L-M 

( 0 nx 
;3X 

) + a aMnxe _ a M 
0 7 

0e 0 ne 

2n 

NOEBne 
av = aoroPh -. 
atn ' 

[Mb 1 

2n 
t3W 

= aoroPh -. 
at2 ’ 

cos cp 
0 = QoroQnx; 

[ABC I 

[A8d 1 

3(roMnxB) + ~ ""ne 
3X 

-++M 
0 36 0 nx6 cos cp 

0 = aoroQne; fA8e I 

where the related constitutive and strain/displacement equations 
become 

N =cF. nx ( nx + vcne); [Agal 

N 
ne = c Ene + lxx); 

( [A9b I 
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N nxe nxe ’ 

M = D 
nx ( 

Knx + vKne 
>; 

M 
n0 

= D 
( 
Kne + vKnx 

>; 

M 
nxe 

=xLpK 
nxe' 

1 sun n E nx - kc + gp,,; 
rl 

n n n U cos cp W 0 sin cp 0 
E ne 

=$$+ r - r. ; 
0 

1 avn cos cp 
0 n 1 a2 

'me 
E--m 

a0 ax v +-- 
r r. a0 + B),e; 

0 

1 aBnx 
K =- -- 

nx a ax' 0 

aBne cos cp 
K ne = k ae + r. O Bnxi 

1 apnf3 
K =-- 

nxe a ax 
+L+- 

r cos ‘popne; 
0 

B,, = -(kg+ $; 

( 

n . 1 
B 

awn V sin cp, = -- 
ne r. SF + r. 

> 
' 

[A9c 1 

[AlOa] 

[AlOb] 

[AlOc] 

[Alla] 

[Allb] 

[Allc] 

[A12a] 

[A12b] 

[A12c] 

[A13al 

[.A13b 1 
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The first three equations of motion, Equations [A8], can be 
reduced to a linear eighth-order set of partial differential equa- 

tions in the unknown displacements un, v n n 
, and w . These equa- 

tions are homogeneous, and buckling loads or natural frequencies 
are defined by non-zero solutions of these equations. The axial 
load and external pressure do not appear explicitly since the 

stress resultants No and Ni are nonlinear functions of these loads. 
X 

To distinguish between different solutions of the equations, 
three multipliers are introduced in the computer solution. The 

terms from the solution of Reissner's equations 
( 

0 
Ng, Ni, @, are 

multiplied by Al, the membrane shear stress N 
0 T J 

xe 
= - is multi- 

2Jrr 2 
0 

plied by A2, and the inertia terms multiplied by A3. Any of these 

multipliers can be specified in input to the program as an eigen- 
value. For example, to determine the buckling torque for a given 
external pressure, h 1 is set equal to unity, A3 = 0, and A, be- 

comes the eigenvalue that determines the buckling torque. 

The sperical cap under concentrated load has A, = h3 = 0, with 

Al as the eigenvalue. When Al is determined, it defines buckling 

as occurring when the axisymmetric stresses and rotation have been 
multiplied by Al. Since the relation between loads and stresses 

is nonlinear, the loads must be varied in the input data until 
Al = 1 to exactly define the buckling loads. 

After the substitutions are made to reduce the problem to an 
eighth-order set of linear partial differential equations, they 
are solved by successive approximations. All terms containing 
the eigenvalues (hl, A2, h3) are put on the right side of the 

' equations and an assumed solution is used for the unknown func- 
tions on the right side. The resulting nonhomogeneous equations 
are solved for the unknowns, which are normalized and substituted 
back into the right side as a new approximate solution. The nor- 
malization procedure involves adjusting the particular eigenvalue 
that is allowed to vary until the assumed solution is within a 
certain percentage (prescribed as input) of the new solution of 
the differential equations. 
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This type of solution converges to the lowest natural fre- 
quency for the shell for a given number of circumferential waves 
and will not give the higher frequencies. It also converges to 
the lowest buckling loads, but they are the only loads observed 
in practice so that this feature of the solution is not a disad- 
vantage for buckling problems. 

Before substituting in the equations in Equations [A8] to re- 
duce them to their final form, a new dependent variable is intro- 
duced: 

Mn = D(K,~ + K 
ne >* 

[Al4 1 

The additional dependent variable is needed to fit the format 
of the numerical solution that is based on simultaneous second 

order differential equations. The choice of M" leads to the 

Laplacian operating on Mn in Equation [ARC]. The Laplacian oper- 
ator is simple to program in the numerical solution. 

The transverse shear resultants defined by Equations [A8d] 
and [A8e] can then be expressed by 

r 
0 aMn 

sin cp 
atvn > 

sin cp 

'oQnx = a ax 
- + D(l - v) O 

rl 
ax - 

0 

[A15a] 

roQne 

[A15b] 

Finally, the solution to the partial differential equations 
is assumed as 

n 
u = u,(x) co9 n6 + u,(x) sin n6; [A16a] 

n 
V = V,(X) sin ne + v,(x) cos ne; [A16b] 

n 
W = W,(X) cos ne + w,(x) sin ne; [A16~] 

M" = Ml(x) cos n6 + M2(x) sin ne. [A16d] 
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The second terms on the right of the preceding equations are 
only required for the torsional buckling problem. The successive 
approximation solution is particularly adapted to torsional buck- 
ling since the coupling between the functions of x having different 
subscripts 1 and 2. only occurs for terms multiplied by the eigen- 
value A which appear on the right-hand side of the nonhomogeneous 
differe$tial equations. '. 

Substituting Equations [A161 into Equations [A9], [AlO], [All], 
L4121, h131, and [A15], and the resulting equations into the first 
three equations of Equation [~8] and into Equation [A14], leads 
to a set of four simultaneous second-order ordinary differential 
equations of the form 

Lll("l) + nL12(v1 /ro) + L13(w1) + L14("l) = Ll; 

nL21(U1) + L22(v1 /ro) + nL23(Wl) + nL24(Ml) = L2' 

[A17a] 

[A17b] 

L31("1) + nL32(V1/ro) + 

L41("1) + nL42(V1/ro) + 

The number of circumferential 
the operators L12, L21, L23' 32' 

L 

L33(w1) + L34(Ml) = L3; [A17c] 

L43(w1) 
-k L44(Ml) = 0. [A17d] 

waves, n, is factored out of 
L 

24' 
and L42 because these 

operators for u 2' V2' W2’ and M 
2 are then the same but n is changed 

to minus n. This allows using the same operators in the numerical 
solution by the device of changing the sign of Equation [A17b] and 
solving for 

(-v2/ro) 
in iteration for the functions of x with 

subscript 2. 

The operators in Equations [Al71 for a shell of revolution 
are: 

+ vu & Cc 'OS '0) - 

aon2C(1 - v>u 

2r 
0 

QoCU 
- - cos2 (PO + 

CXoD(l - v)u 
0 n 2 D' _--- 

r 2 
0 '1 

2ro D 'OS 'o ' 
I 
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d(roCY> + roC(l - ‘>’ do _ a cy cos cp L12(Y) = -’ dx _ D(1 - v) 
2 dx o 0 

2rlr0 

d(roy sin 'Pi) aoD'(l - v)y sin cp, 
. D(l - v) 

dx 
rl '1 

d(roy sin 'PO) ' 
. 

dx - Eaoy sin (PO ; 
I 

LJW) = - 5 -v $ (Cw sin 'po> 
X 

L14W = -2 dM. 
r1 dx' 

du 
- vcz- 

aoCu(l + v) cos cp, 

2r0 

roC(l - v) 
* 

2 dx cos cp 
0 

- aoCn2y 

3 
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L2@ .= aoCw ['i~o'o + $-- - D(1 - v) sin 

D' 1 dw D' w 'OS 'o ; +----- 
D aor dx D r2 

0 I 

L24(W = -aoM sin Cp,; 

--- 'p, ; 

n2D' dw 2 -sin 'p, D/ 
+ --+2X2& 

aoro dx 2 - D cos cp ; 
.rO 

5 



+ aou 'OS 'o 
rr ; 

01 

Lb2(Y) = 
soy sin cp, 

r ; 
0 

cos cp 
o dw -_-. 

r dx 2 ' 
0 r 

0 

a 

L44(M> = D o M; 

Ll = Al 
[ 

& roCP~Bnx - 
) 

aoCn(l - v) 

2 al* + vaoc 
( 

cos cp 
0) 

* B&,, 1 - A1 p (N>nx 
cYr 

1 
+ NnxB; - A2 e No 

1 1 xeBn@ 

- A3aorophu; 

L2 = Al 
[ 

+A~ 
( roCB~Bnx - 

) 

aoC(l - v) 

2 'Z'nEJ cos cp 
0 

- vcxoCngO~ 1 x nx - AlaoN%n@ sin cp 
0 

- A2ao sin (P, N$$nx 

- h3CXor',ph v ; 
( > 

L3 = Al [aoroi;Bnx] + Al [& (r,N>,, .+ roNn$E) -k nao$Pne] 
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The terms in the operators Ll, L2, and L3 are, strictly speak- 

ing, not correct. The factors sin n6 and cos n6 must be divided 
in the proper terms. If the buckling torque 

T = 2nroh2Nze 

is to be determined, signs must be checked after each iteration 
to obtain approximations for first functions of x with subscript 
1 and then subscript 2, defined in Equations [A16]. Since A2 = 0 

for the present study these terms will be neglected in the follow- 
ing discussion. The eigenvalue 

A3 = (2flf)2 

appears if the problem is to find f, the natural frequency of 

harmonic motion for the shell, where un, v*, and wn serve to de- 
fine the mode shape. 

Numerical Solution - The set of four simultaneous second-order 
ordinary differential equations (Equations [A17]) have variable 
coefficients and must be solved numerically. The numerical solu- 
tion consists of converting the differential equations to integral 
equations. The integrals appearing in the integral equations are 
replaced by mechanical quadrature formulas with the result that 
the integral equations are replaced by a set of linear algebraic 
equations. 

The differential equations, Equations [A17], are of the general 
form 

n 

c 
Rij(X>y;‘(x> ’ Pij(X)ys(X) + Qij(X)yj(X) = F~(x). IA181 

j=l 

i = 1, 2,-m m 

m=n=4 
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where 

y1 = u, 

y2 
= v/r 

0’ 

y3 
= w, 

y4 
= M. 

Primes denote differentiation with respect to x. 

After integrating by parts twice, the equations become 

n n 

c 
Rij(x>yj(x> = 

(b - x) 
(b _ a) + Rij(b)Yj(b) (b 

j=l 

b 

-I [ 

n 

c 
H 

ij 
a j=l 

r* 
. 

1 
c 

Gij(t)yj(t> - Fib) dt; 

j=l 1 
K(x, t> 

a<ttx - 

x<tLb 

a<t<x - 

x<tlb. 

where 

Hi j(x) = PijW - 2Rij(x>; 

Gi j(x) = Qij(x> - Pij(x) + R;;(x); 

(b - x)(t - a)/(b - a> 
K(x,t) = 

(b - t)(x - a)/(b - a> 

(b - x)/(b - a) aKi;,t) = 

'(X - a)/(b - a) 

[A19 1 
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The algebraic equations are derived from the following quad- 
rattire formulas: 

b d 

Hij(t)yj(t)dt = - c Ar'x)Hij(tr)Yj('r); [A20a] 

r=l 

b .f? 

K(x,t) Gij(t)yj(t)dt = 
c 

Br(X)Gij(t,)Yj(tr). 

r=l 

[A20b] 

The method of computing the sets of quadrature coefficients'Ar(x) 

and Br(x) is derived in Re.f 18. Since the kernels K(x,t) and 

aK(x,t)/at are used as weight functions, their discontinuities at 
x = t do not affect the accuracy of the quadrature formulas. How- 
ever, this means that a different set of quadrature coefficients 
are required at each station x = t in the numerical solution. r r 
These coefficients are arranged as two matrices A -rcxk) and zr( Xk)' 

The integral equations (Equation [A19]) become 

4 

j + %j)Yj(xr> = %(xk)Fi(xr> [A211 

i = 1, 2, 3, 4. 

The terms R.., A.., and gi. 
-1’ -1’ J 

are matrices that multiply the column 

vectors y j("r)' 
They are written from the quadrature formulas as 

the formal product of a matrix times a columnvector 

A -ij = hr(xk)Hi j("r)' 

B -ij = ~r(xk)Gij(xr)' 

[M2al 

[A22b] 

The matrices I&. are written from the functions'R 
3 

i jw * The first 

and last columns of R.. are 
"1' 

Rij(a>(b - xk)/(b - a) and Rij(b)(xk - a)/(b - a). 
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The trace of gi.,is -R 
J ij(xk)- and the remaining terms are zero.. 

The set of algebraic Equations [A211 contains 4(~? - 2) equa- 
tions in 41 unknowns. The remaining eight equations follow from 
the boundary cond.itions. 

The functions R ij(x), Hij(x), and Gij(x) associated with the 

differential Equations [A171 are programed in the following form 19. . 

rC 
Rll = + 

H cm” 
11 

0 

G1l =-e- [ 

2 
cos cp + 

n2(l - V) 

0 2 1 
[1 

, 
+ vc 5 cos cp 

0 
- aoK sin cp 1 0 

- aoK;D(l - v) 
/ cos cp 

- K1 sin cp, + k a ' . 
0 1 

RI2 = 0; 

H12 = 

nroC(l + v) nD(l - v) 
2 - 2 Kl sin cp,; 

G12 = - 
nCXoC(3 - v> cos cp, nro(l - v)C' 

2 2 

+ nD(l - v) 
2 ( 

sin cp 
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R13 = 0; 

H13 = 
-C + v sin 'p, 1 - DKl(l - v) ' - Kl sin cp, ; 1 

G13 
= aoc cos cp, 

[si:bpo + vKl] + n2KlD:,, - VI 

- DKl(l - v) sin cp 
0 

+ 2K; sin (p, + aoK: cos cp, 1 
+ 

KID'(l - v) cos cp, ' 

I 
. 

a 
0 

R14 = 0; 

H14 = -roKl; 

G14 = 1 . 

R21 = 0; 

nC(l +-v) nD(l - 

H21=- 2 
+ 

v)(sin qo)Kl 

2r ; 
0 

G21 = - 
rxXoC(3 - v) cos cp, 

2r + vnC' 
0 

aoK cos 'PO 1 2 * 

R 22 = w + D sin2 cp ; 0 
0 1 
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roC(l - v) 

H22 =- 2a 
0 

- D(l - v) 

. 

cos cp 
0 

- aoroKl sin cp 
C 

sincp; 
0 

roC' 
+- 

C cos cp 1 0 

+v[(Kl - 2 s~~‘“)(~cos cp, - CXoKl sinTo) 

aoK cos 2 cp 
+ K; cos 'P, - 

0 1 sin cp . 
r 0 

0 

R23 
= 0;. 

nD'(l - v) sin cp 

j n(1 - v) 
D' sin cp, ' 

r 
0 [ 1 ao * 

R24 = 0; 

H24 = 0; 

na 
0 

sin cp 

G24 = 
0 . 

r 
0 
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R31 = 0; 

+ n2KlD'(1 - v) ro. 

R =O; 
32 

nD'(l - 

H32 = 

v) sin cp, 

aO 
; 

'G32 
= nCXoC vr K 01 

+ sin (p, 1 
nD(1 - v) sin cp, I 

^ sin cp 
r 0 

-$coscp . 1 0 
0 

DC1 - v> 
R33 =- a0 0 

_ g co: ‘0 ; 
0 1 

~~~~~ 
,a 

sin a0 + K; sin cp, -t aoKf ~0s (PO 
0 1 

2 . sin cp 0 

G33 
= -aoC sinq + r 

0 0 1 
-I- 

n2aoKlD(1 - 

r2 
0 

43 



r 

R34 = g; 

r a’ 
H 34 = -cos'p,+$ $ ; 

0 0 0 

2 
na 

0 
G34 = -7. 

0 

RLcl = 0; 

H41 1; =K 

G41 = 
aoK cos (PO 

. 
r 

0 

R42 = 0; 

H42 = 0; 

G42 = 

CXon sin cp 
0 

r . 
0 

1 

R43 = <; 

1 a: 

0 

cos cp 
0 

H43=oga+ r ; 
0 0 

1 
G43 = < 

R44 = 0; 

H44 = 0; 

, 
r 

sin cp 
aon 

0 
-ycoscp -- 

0 0 r 
0 I . 
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The right hand sides of Equations [A211 are not programed as 
indicated there, the functions on the right of the differential 
equations, Equations [A17], contain derivatives of known terms. 
Rather than compute the derivatives numerically, these terms are 
integrated by parts, twice, along with the left sides of the dif- 
ferential equation. The right sides of the algebraic equations, 
Equations [A21], are written in the program as a vector defined 
bY 

j = 1,2,3,4 

where the functions appearing in the present problem are 

Fly(x) = -hlroW~Pnx l [A23al 

Fl(x) = hlCaoP; [ ~3 cos cp - 
nx 0 

- AlaoroKl 
[ 

No@ -t N x nx @" . nx x 1 
F2y(~) = -Al 9 roCB~Bne. 

[M3b I 

[A23c] 

F2(x) = -hlaoCf3; ne 
cos cp 

0 
-t VI@ 

nx 1 
- hlaoN~Bne sin cp . 

0 [A23d] 

F3y(x) = hlro ( BiNnx -+ NOB x nx ). 

F3(x) = -AIQoCB~nx 
C 

roKl + v sin C$J 
0 I. 

-t- hlnaoNiDne. 

[M3e 1 

[A23fl 

The problem now is to find Al by iteration since @ 
nx' @,,, 

and N nx are expressed as functions of u,(x), (vl/ro), w,(x), and 

Ml (4, the dependent variables. The iteration starts by assuming 

u1 =O,vl r. 
/ 

fi(x - a) = 0, w,(x) = 0.1 -I- sin (b _ a) , and Al = 1. 
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The terms in Equations [A231 are computed from the formulas 

B 
1 dwl u1 - _ -. 

nx =-Fdx rl' 

nw 
B 

1 v1 =-- - 
nQ r 

0 
r sin cp,; 

0 0 

-+B" B 
v1 1 [o +vC n- -t- 

u1 cos (p, - w sin 'po 

x nx 1 . r r 
0 0 

The terms with zero superscript are known solutions of Reissner's 
equations. 

After each iteration, the solution is normalized by making Al 

times the maximum value of the w 
lCxr) 

vector equal to the same 

product from the previous iteration. This prevented underflow or 
overflow in the computer. The iterations proceed until successive 
values of Al fall within a prescribed tolerance that is entered 
as input. 

The value of Al then defines the factor that must be multiplied 

times the axisymmetric solution to produce bifurcation. The axi- 
symmetric load must be varied until Al = 1 to obtain an exact 
answer. 

The algebraic equations, Equations [A21], are solved by a 
Gaussian elimination subroutine that was written by L. Moore. It 
has the feature that the operations used to reduce the matrix on 
the left side of the equations to triangular form are stored in 
the computer. The back substitution is written as a separate sub- 
routine so that the iteration process only consists of calling the 
back substitution subroutine. This results in a great saving of 
machine time compared to inverting a matrix for each iteration. 

As part of the checkout procedure for the computer program, 
data were calculated for comparison with solutions of problems 
that have appeared in the literature. All results were satis- 
factory. Two special cases are discussed in Ref 20 and 21. 
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Table 1 Shell Properties 

Shell Load Tip Radius of Thickness, h 
Number Diameter,2 rp (in.) Curvature, a (in.) (in.) A 

* B-30 0.125 20.0 0.1090 4.92 
B-49 0.25 20.0 0.1065 4.97 
J3'31 0.5 20.0 0.1090 4.92 
B-32 1.0 20.0 0.1080 4.95 

B-33 0.125 20.0 0.0385 8.27 
B-50 0.25 20.0 0.0391 8.24 
B-34 0.5 20.0 0.0390 8.22 
B-35 1.0 20.0 0.0390 8.22 
B-37 0.125 20.0 0.0182 12.0 
B-41 0.25 20.0 0.0169 12.5 
B-44 0.5 20.0 0.0175 12.3 
B-38 1.0 20.0 0.0165 12.6 

B-43 0.125 20.0 0.0102 16.1 
B-43 0.25 20.0 0.0102 16.1 
B-43 0.5 20.0 0.0102 16.1 
B-43 1.0 20.0 0.0102 16.1 

B-36 0.125 20.0 0.0066 20.0 
B-36 0.25 20.0 0.0066 20.0 
B-36 0.5 20.0 0.0066 20.0 
B-36 1.0 20.0 0.0066 20.0 

B-45 0.125 30.0 0.0687 5.05 
B-46 0.25 30.0 0.0687 5.05 
B-47 0 5 30.5 0.0690 4.98 
B-48 1.0 31.0 0.0687 4.95 

B-55 0.125 31.0 0.0270 7.29 
B-52 0.25 31.0 0.0266 7.97 
B-27 0.5 31.0 0.0271 7.90 
B-27 1.0 31.0 0.0271 7.90 

B-24 0.125 31.0 0.0125 11.6 
B-24 0.25 31.0 0.0125 11.6 
B-24 0.5 31.0 0.0125 11.6 
B-24 1.0 3i.0 0.0125 11.6 

B-26 0.125 31.0 0.0069 15.6 
B-26 0.25 31.0 0.0069 15.6 
B-26 0.5 31.0 0.0069 15.6 
B-26 1.0 31.0 0.0069 15.6 

B-53 0.125 31.0 0.0037 21.4 
B-53 0.25 31.0 0.0037 21.4 
B-53 0.5 3i.0 0.0037 21.4 
B-53 1.0 31.0 0.0037 21.4 

Mat'1 Properties E = lo7 psi, v = l/3. 
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Table 2 Experimental Upper and'Lower Critical Buckling Loads and Deflections 

Shell A 

B-24 11.6 

B-38 12.6 

B-26 15.6 

B-43 16-l 

B-36 20.0 

B-53 21.4 

a 
(in.) 

3i.o 

20.0 

31.0 

20.0 

20.0 

31.0 

Load 
Diameter, 
2rp 
(in.) 

118 
114 
l/2 

1 

1 

l/a 

12.31 28.4 28.9 
12.11 28.2 28.8 
11.92 27.6 28.4 
11.45 26.8 27.2 

7.35 22.2 23.0 7.32 22.2 23.0 

7.92 33.5 36.7 7.35 30.6 35.8 
14.15 55.2 55.9 13.61 54.7 55.3 
15.85 58.0 61.0 15.57 57.8 59.1 

l/4 8.21 35.1 37.3 a.01 34.2 37.1 
14.15 55.2 56.5 13.61 54.6 55.5 
la.12 61.1 62.7 16.99 59.5 61.3 

112 

1 

8.06 35.7 37.3 7.97 34.3 36.3 
14.12 54.6 55.9 13.56 54.2 54.6 

2.83 1.5 5.4 2.41 2.8 5.1 
a.49 34.8 38.2 8.21 34.5 36.4 

16.42 57.6 58.8 14.44 55.0 56.0 

w 

114 

112 
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Fig. 39 Shell B-36 with Three-Lobed Deformation 



Fig. 40 Shell B-36 with Five-Lobed Deformation 


